Identifying strategies for increasing efficiencies in bus transport in India by estimating a cost function

Kaushik Deb
Associate Professor, TERI University
Motivation

• Rapid economic development in India → increasing mobility demand → Rising share of personal vehicles
 – Lower share of public transport
 – Higher energy consumption, emissions, noise, waste, etc.
 – Social & political impact

• Strategy: increase share of public bus transport in passenger transport

• Need for investments → financial viability
 – Cost savings → Optimal organization of production to obtain savings
 • Economies of Density and Scale
 • Impact of management form of firms on the cost structure
Density and Scale Economies

- Large number of ‘small’ firms
 - Smallest firm: 32 buses
- Some very large firms
 - Largest firm: 19000+ buses

26 October 2010
Kaushik Deb, TERI University
Identifying strategies for increasing efficiencies in bus transport in India by estimating a cost function
Density and Scale Economies

• Hedonic approach:
 – Specify cost function of aggregated output measure and hedonic measures of output mix \(C = f(w, \varphi(y, N)) \) and \(\varphi(y, N) = y \phi(N) \)
 – More generally, \(C = f(w, y, N) \)

• Implication:

\[
C = f(w, y) \quad \Rightarrow \quad ES(w, y) = \frac{1}{e_{cy}(w, y)}
\]

\[
ED(w, y, N) = \frac{1}{e_{cy}(w, y, N)}
\]

\[
C = f(w, y, N) \quad \Rightarrow \quad ES(w, y, N) = \frac{1}{e_{cy}(w, y, N) + e_{cN}(w, y, N)}
\]
Cost characteristics of public bus transit in

\[C = f \left(pkm, P_i, P_f, P_k, t, LF, NL, AR_i, MG_i \right) \]

- Specification issues
 - Dummy variables for Management Structure, Area of Operation (urban, mixed, hilly)
 - Translog, normalized at median. Homogeneity imposed with capital price
- Dataset
 - All public bus companies in India
 - NL data available only for 8 years, Model with NL allows distinction between Density and Scale
 - Unbalanced panel: 51 firms over 8 years

26 October 2010
Kaushik Deb, TERI University
Identifying strategies for increasing efficiencies in bus transport in India by estimating a cost function
Estimation methods

- **Fixed Effects**

 \[C_{it} = \alpha_0 + X_{it} \alpha_1 + \nu_i + \varepsilon_{it} \]

 \[\varepsilon_{it} \sim \left(0, \sigma^2_\varepsilon \right) \]

- **Random Effects**

 \[C_{it} = \alpha_0 + X_{it} \alpha_1 + \nu_i + \varepsilon_{it} \]

 \[\nu_i \sim \left(0, \sigma^2_\nu \right) \mid \varepsilon_{it} \sim \left(0, \sigma^2_\varepsilon \right) \]

 \[\text{Cov}(\nu_i + \varepsilon_{it}, \nu_j + \varepsilon_{jt}) = \begin{cases}
 \sigma^2_\nu + \sigma^2_\varepsilon & \text{if } i = j \text{ and } s = t \\
 \sigma^2_\varepsilon & \text{if } i \neq j \text{ or } s \neq t
 \end{cases} \]

- **SUR**

 \[C_{it} = \alpha_0 + X_{it} \alpha_1 + \varepsilon_{it} \]

 \[S_{it} = \beta_0 + x_{it} \beta_1 + \varepsilon'_{it} \]

...
Environmental variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load factor</td>
<td>-0.36^{**}</td>
</tr>
<tr>
<td>Network Length</td>
<td>0.13^{***}</td>
</tr>
<tr>
<td>Mixed operations</td>
<td>-0.59^{***}</td>
</tr>
<tr>
<td>Hilly Areas</td>
<td>-1.32^{***}</td>
</tr>
<tr>
<td>Company</td>
<td>0.61^*</td>
</tr>
<tr>
<td>Municipal Undertaking</td>
<td>0.62^*</td>
</tr>
<tr>
<td>Corporation</td>
<td>0.88^{***}</td>
</tr>
</tbody>
</table>

- Combining rural & urban operations leads to lower costs
- Impact of management structure is ambiguous
 - Road transport corporations are most expensive

26 October 2010 Kaushik Deb, TERI University

Identifying strategies for increasing efficiencies in bus transport in India by estimating a cost function
Economies of Density and Scale

<table>
<thead>
<tr>
<th>Economies of Scale</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>2.087</td>
</tr>
<tr>
<td>Medium</td>
<td>1.450</td>
</tr>
<tr>
<td>Large</td>
<td>1.155</td>
</tr>
<tr>
<td>Very large</td>
<td>0.953</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Economies of Density</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>9.583</td>
</tr>
<tr>
<td>Medium</td>
<td>2.150</td>
</tr>
<tr>
<td>Large</td>
<td>1.293</td>
</tr>
<tr>
<td>Very large</td>
<td>0.842</td>
</tr>
</tbody>
</table>

- Significant Scale Economies for median firms
 - Fall as output increases
- After including NL, 30% of the largest firms show Economies
 - Density & Scale
- Potential for cost reduction from mergers

26 October 2010 Kaushik Deb, TERI University
Identifying strategies for increasing efficiencies in bus transport in India by estimating a cost function
Policy directions

For India:

• Potential for cost savings from mergers
 – Especially small firms
 – Firms operating in neighbouring areas
 – Combine rural and urban operations
• Side by side competition on the same network not useful for cost savings

In general:

• Research on the best production structure, don’t go by ‘best practice’ approach.
• If it’s a monopoly, regulate; don’t force competition in the market.